Каталог продукции:

 

Задать вопрос:

Заказать обратный звонок.
Специалист свяжется с вами в течении 15 минут
Ф.И.О.
Тел.

Балансировочные станки: характеристики и устройство станков

Классификация балансировочных станков.
Балансировочный станок по существу является измерителем колебаний механической системы, связанной с ротором, по характеристикам которых судят о неуравновешенности ротора. Некоторые станки могут иметь встроенные приспособления для корректировки масс ротора. При серийном и массовом произ¬водстве операции определения и уменьшения дисбалансов могут совмещаться, т.е. измерения дисбалансов ротора и корректи¬ровка его масс проводятся одновременно.
По характеру режима работы и конструктивному исполнению различают балансировочные станки дорезонансного, резонансного и зарезонансного типа.
У дорезонансного балансировочного станка частота вращения при балансировке ниже наименьшей собственной частоты колебаний системы, состоящей из балансируемого ротора и паразитной массы, которая включает в себя часть массы станка, участвующей в колебаниях при возбуждении их неуравновешенными силами ротора.
У резонансного балансировочного станка частота вращения при установившемся режиме балансировки равна собственной частоте колебаний системы, состоящей из ротора и паразитной массы. Сюда же относят и станки с балансировкой при проходе через резонансный режим. Станки с проходом через резонанс наиболее просты, имеют простой привод и допускают замер амплитуд колебаний простыми приборами, но имеют неопределенные характеристики при проходе через резонансный режим, что снижает точность балансировки. Станки с работой на резонансном режиме более чувствительны, но требуют применения сложного привода, чтобы строго поддерживать этот режим.


В зарезонансном балансировочном станке при балансировке обеспечивается частота вращения ротора выше наибольшей собственной частоты колебаний роторной системы вместе с паразитной массой. Станки этого типа, как и дорезонансные, не имеют проблем в поддержании устойчивого движения и имеют простые приводы. Однако малые значения амплитуд колебаний в зарезонансном режиме требуют применения высокочувствительных приборов для измерения амплитуд.
Механические системы балансировочных станков классифицируют по числу степеней свободы ротора, а также по числу степеней свободы оси ротора вместе с подвижной частью станка.
  В классификации по числу степеней свободы ротора механические системы распределены по семи классам (рис. 1, а). Номер класса (римская цифра) соответствует числу степеней свободы жесткого ротора. Кроме того, введен дополнительный признак разделения механических систем на две группы: буквой А обозначены станки, имеющие раму, на которой размещены опоры ротора, а буквой В - станки с отдельными опорами, установленными на неподвижном основании. Это подразделение характеризует не только конструктивные особенности системы, но и особенности балансировочного процесса, так как в станках группы А выбор точек для измерения колебаний менее ограничен, чем в группе В.

Рис. 1, а. Классификация механических систем балансировочных станков по числу степеней свободы ротора
Системы классов IVB, VA, VIA и VIB промышленного применения не получили. Системы ША, ШВ и IVA применяются в некоторых станках, выпускаемых фирмами Hofmann-Kunze, General Motors Corp. и General Electrik Co.
Широко применяются системы классов: IA - в станках для статической балансировки; IB - в балансировочных станках типа МДУ, ДБН, МДУС отечественного производства и в станках типа UA, ИА, ИАГ фирмы Losenhausenwerk; IIA - в отечественных станках М-40, М-48, МДБГ-1, УУГ-3 и станках фирм Tinius-Olsen и Giesler типа G2; ПВ - в станках конструкции МИИТ и фирм Bear, Bentrath и Losenhausenwerk; VB - в отечественных станках типа ДИСБАЛАНС, МС, МДБ, 9703, 9710, 9739 разных модификаций и станках фирм Reitlinger, K.Schenk, Hofmann (серий R, AM, VGW, E фирм Gisholt (типа HS) и Dynagraph (типа М), фирмы Eriksson (типа URB}, Jackson Bradwell Ltd, Dawe Instrum. Ltd и EMJ и серии ВНЕ; VIIA - в станках конструкции МВТУ, а также в станках фирм Sperry Strobodyn) и Hermann.
В классификации по числу степеней свободы оси ротора станки делят на четыре группы (рис. 1, б).
Группа 1 с неподвижной осью ротора (см. рис. 1, б) соответствует классам IA и 1Б (одна степень свободы). Станки этой группы (ДБН-50, МДУ-3) имеют жесткую связь оси ротора массы т через неподвижные подшипники с неизмеримо большей массой фундамента тф. Дисбалансы ротора определяют по измерениям реакций опор, распределение которых обусловлено только положением центра масс относительно опор или плоскостей измерения. Отсутствие подвижных частей позволяет упростить конструкцию опор и применять осевой привод ротора. В качестве массы тф при средних и тяжелых роторах используют неподвижное основание (пол помещения или фундамент), колебания которого вызывают в измерительном элементе широкий спектр помех и для их подавления нужна более эффективная фильтрация, чем в системах с упругими связями с внешней средой. Виброизоляция с помощью мягкой подвески станка нарушает неподвижность подшипников, лишая систему возможности настройки без применения тарировочного ротора. Виброизоляция фундамента без нарушения соотношения сил возможна только для малых роторов, когда установленная на пружинах плита основания массой в несколько килограммов значительно превышает массу ротора.
Работа станка возможна только на частоте вращения, значительно меньшей собственной частоты системы (в дорезонансном режиме), когда угол сдвига фаз практически равен нулю, что снижает ошибки измерения дисбаланса. Вызванные дисбалансом силы пропорциональны, поэтому целесообразно применять в этих станках высокие скорости. Высокий уровень собственных частот системы и ее частей делает ее чувствительной к ударным помехам, демпфирование которых затруднительно.
 

Рис. 1, б. Классификация механических систем балансировочных станков по числу степеней свободы оси ротора
Группа 2 (см. рис. 1, б) с фиксированной осью колебаний оси ротора (две степени свободы) соответствует классу ПБ. Станки группы 2 (М-40, МДБГ-1) имеют жесткую связь колеблющейся системы (рамы) с основанием в направлении, перпендикулярном оси колебаний системы, и работают при резонансном режиме с большими угловыми колебаниями рамы, что удобно для измерений, но требует применения специального привода для обеспечения постоянной частоты вращения ротора. Высокая добротность колебательной системы ослабляет помехи иных частот. Поэтому станки в резонансном режиме по возможности обнаружения дисбаланса сравнимы со станками, оборудованными электронной измерительной системой. Способы балансировки на таких станках основаны на поочередном определении дисбаланса ротора в двух плоскостях коррекции, каждая из которых поочередно совмещается с фиксированной осью колебаний рамы.
Внешние вибрации, перпендикулярные фиксированной оси и оси вращения ротора, могут налагаться на измеряемые и ограничивать минимальную величину определяемого дисбаланса. Поэтому эксплуатировать такие станки целесообразно в помещениях с низким уровнем внешних вибраций. При балансировке средних и крупных роторов станок монтируют на изолированном фундаменте, а станок для малых роторов устанавливают на плите с мягкой подвеской.
Станки группы 2 с балансировкой на выбеге редко применяют из-за низкой производительности, требующей нескольких пусков для каждой плоскости коррекции. При этом для балансировки на выбеге ротор должен иметь достаточно большой момент инерции масс относительно оси вращения, а также малые и стабильные потери на трение в подшипниках. Иначе при быстром проходе через резонанс амплитуды колебаний не достигнут достаточной величины, а нестабильность потерь на трение приведет к разбросу величин амплитуд при разных пусках. На таких станках сложно балансировать длинные роторы в собственных опорах.
Станки группы 2 удобны при балансировке роторов различных размеров и масс в экспериментальном и мелкосерийном производстве и при ремонтных работах, что определяется простотой их переналадки, состоящей в соответствующей установке ротора относительно оси качания рамы. Работающие в зарезонансном режиме и оборудованные электрическими датчиками с усилителями станки с фиксированной осью колебаний широко применяются для балансировки роторов гироскопов.
Группа 3 (см. рис. 1, в) с фиксированной плоскостью колебаний оси ротора (три степени свободы) соответствует классу VB (станки ДБ, 9703, 9710), наиболее широко распространена, что объясняется возможностью определения дисбалансов ротора в двух плоскостях коррекции по колебаниям опор за один пуск без перестановки ротора. Для сохранения линейности колебаний системы, позволяющей суммировать их алгебраически, станки работают в зарезонансном режиме с малыми амплитудами колебаний. Общий вид балансировочных станков с двумя подвижными опорами моделей ДБ-102 и ДБ-302, выпускаемых Савеловским машиностроительным заводом (СМЗ) и Кировоканским заводом прецизионных станков (КЗПС), показан на рис. 2 и рис. 3 соответственно.
 

 

 Рис. 2. Балансировочный станок модели ДБ-102

  

Рис. 3. Балансировочный станок модели ДБ-302
На рис. 4 и рис. 5 показаны общие виды универсальных балансировочных станков германских фирм Hofmann (тип HL-100) и Losenhausenwerk (тип UA-100) с приводом балансируемого ротора от шарнирного вала, предназначенных для динамической балансировки роторов массой до 100 кг. В первом станке величина составляющих дисбаланса показывается одновременно в двух плоскостях коррекции, во втором - поочередно в каждой плоскости коррекции.
 

 

Рис. 4. Балансировочный станок типа HL-100 фирмы Hofmann

Рис. 5. Балансировочный станок типа UA-100 фирмы Losenhausenwerk
Колебания опор ротора в станках группы 3 пропорциональны дисбалансам ротора в плоскостях коррекции. Малые механические колебания опор станка преобразуются в эквивалентные электрические сигналы в измерительной системе, в которой вырабатывается разностный сигнал, отражающий дисбаланс в конкретной плоскости коррекции.
Точность измерения дисбалансов ротора мало зависит от внешних вибраций, так как горизонтальные составляющие помех могут быть снижены соответствующим выбором собственной частоты колебаний ротора с опорами, а вертикальные -перпендикулярны измеряемым колебаниям. Однако при балансировке таких деталей, как роторы малых электродвигателей и гироскопов, коленчатые валы автомобильных двигателей, влияния вертикальных составляющих внешних помех могут оказаться существенными, что обусловливает необходимость виброизоляции станков. В малых балансировочных станках (модели 9703 и 9710) это обеспечивается подвеской всего станка на резиновых прокладках, в средних (модель 3672) - установкой на изолированном фундаменте.
К недостаткам станков группы 3 относят нарушение настройки цепи разделения плоскостей коррекции в зависимости от величины дисбаланса ротора и явление самокомпенсации. Нарушения в цепи разделения плоскостей коррекции могут быть исключены в счетно-решающей части системы измерения, так как характеристики колеблющейся системы закономерно изменяются в зависимости от величины корректирующих масс. Кроме того, принято снижать начальный дисбаланс не более чем в 6-8 раз за один пуск. Ошибка при этом от недостаточного исключения влияния плоскостей коррекции в современных балансировочных станках составляет около 3%, и практически коррекция не требуется.
Явление самокомпенсации вызывается нарушением симметрии колеблющейся системы и проявляется в резком снижении чувствительности станка по дисбалансу в какой-либо плоскости коррекции. Этот недостаток устраняется размещением центра масс ротора в середине пролета между подвижными опорами.
Группа 4 (см. рис. 1, г) с пространственным движением оси ротора (семь степеней свободы) соответствует классу VIIA.
 

Рис. 6. Балансировочный станок модели МВТУ-0726
В станках группы 4 (МВТУ-772, МВТУ-775) ротор опирается на подшипники, жестко связанные с колеблющейся рамой, соединенной с основанием через упругие связи и демпферы. При вращении неуравновешенного ротора его ось вращения перемещается совместно с колеблющейся рамой, поэтому о дисбалансах ротора можно судить по колебаниям произвольной точки рамы. При этом можно найти точки, движение которых зависит только от статического или только от моментного дисбаланса, что повышает точность измерений. Общий вид станка МВТУ-0726 без жестких связей оси ротора с неподвижным основанием показан на рис. 6.
Возможность произвольного размещения точек измерения позволяет при проектировании станков для статической балансировки выбрать точку измерения, колебания которой зависят только от статического дисбаланса, что позволит упростить обработку сигнала в измерительной системе и обеспечить более высокую точность определения главного вектора дисбалансов. Аналогичным путем возможно создать специализированный станок для определения только моментного дисбаланса.
Монтаж балансируемого ротора на общей жесткой раме обеспечивает соосность его опор, что повышает точность балансировки, а отсутствие жестких связей с фундаментом позволяет соответствующим подбором параметров сделать систему мало чувствительной к внешним воздействиям. Кроме того, можно выбрать направления измерения колебаний, перпендикулярные к наибольшим вибрациям помех, чем снизить их влияние.
Станки группы 4 просты по конструкции, но передача вращения балансируемому ротору в них осложнена возможной несоосностью осей ротора и шпинделя привода из-за изменяющейся под весом ротора осадки колеблющейся части станка. Этот недостаток устраняется установкой привода на подвижной части. В этих станках возможно обеспечить изотропную жесткость по любым перпендикулярным оси вращения ротора направлениям, что важно при определении дисбалансов гибких роторов.
Станки общего назначения для динамической балансировки
Балансировочные станки общего назначения дают возможность измерения параметров динамической неуравновешенности ротора в двух плоскостях коррекции. Корректировку масс ротора можно осуществлять либо на опорах станка (прикреплением грузов, сверлением и т.п.), либо отдельно от станка на соответствующем оборудовании.
Точность станков для динамической балансировки определяется величиной остаточного дисбаланса в плоскостях коррекции, выраженного в единицах удельного дисбаланса. Станки выпускают по трем классам точности измерения остаточного дисбаланса. В станках нормальной точности (Н) обеспечивается измерение остаточного удельного дисбаланса до 1-2 г • мм/кг (точность балансировки 1 мкм), в станках повышенной точности (П) - до 0,4-0,8 г • мм/кг (0,4 мкм), в станках высокой точности (В)- до 0,1-0,2 г • мм/кг (0,1 мкм). Точность проверяют с помощью двух контрольных роторов в соответствии с ГОСТ 20076-80 [С8].
Указанная в описании станка точность определения дисбалансов в плоскостях коррекции обеспечивается для симметричных межопорных роторов, у которых расстояние L между опорами не превышает расстояния L1-2 между плоскостями коррекции больше, чем в 10 раз. Если это отношение больше 10, то принимают плоскости измерения, для которых это отношение меньше 10, а дисбалансы пересчитывают для плоскостей коррекции. Для асимметричных и консольных роторов аппаратура станка дает различную точность для обеих плоскостей.
Конструкция и компоновка балансировочных станков определяются режимом балансировки (дорезонансным, резонансным или зарезонансным), конструкцией ротора и условиями его работы в машине.
Таблица 1. Балансировочные станки общего назначения
Модель станка т, кг d, мм L, мм Dц, мм пб, тыс. об/мин N,kBt
9703  0,01-0,3  80  12-130 16  1,4-5,0  0,05 
9А711  1  250  350  25  2,0-4,0  0,4
ДБГ-1,5   0,1-1,6  135  30-150  -  6,6  0,17
ДБГ-2  0,1-2  250  10-300  -  6,6  -
9710  0,3-3  270  50-360  30  1,4-2,6  0,08
9712  3  350  500  35  2,0-4,0  0,4
ДБ-10  0,3-10  500  50-500  100  0,5-2,5  1,7
9713  10  500  700  50  1,0-4,0  0,25
ДБН-10  0,5-20  200  80-600  100  2,0-12  1,7
9714  0,3-30  500  50-700  65  0,48-2,0  0,8
9А714  3-30  700  1000  70  0,5-2,0  0,88
ДБС-4  3-30  -  -  -   до 3,0  -
ДБН-50  0,5-50  200  800  100  2,0-12  1,7
ДБ-50  5-50  540  50-700  200  1,0-2,0  1,7
МДУС-6  0,5-60  300  800  -  3,0-30  2,5
9В725  10-100  800  1250  100  0,8-1,6  1,7
ДБ-102  10-100  1000  1000  200  0,8-1,2  2,8
9715Р  100  1000  1300  100  0,6-3,2  1,15
9716  300  1300  1800  130  0,32-2,5  2,2
ДБ-302  30-300  1500  1400  250  0,45-0,9  10
ДБ-303А  100-300  1500  2300  350  0,6-0,8  13
ДБ-303М  100-300  1500  2300  250  0,6-0,8  11
9А730  30-320  1200  2000  125  0,6-0,9  4,5
МДУ-210  10-1000  1400  2050  270  0,45-0,8  -
ДБ-1001  0,1-1т  2000  2800  300  0,45-0,6  21
9717  1т  1800  2300  200  0,25-2,0  6,3
МС-25  0,1-2т  1000  4000  150  0,6-0,9  10
9718  3000  2300  3000  250  0,2-1,6  18,5
9А734  03-3,2т  2500  4000  300  0,36-0,6  14
9719М  10т  3000  4000  360  0,2-1,25  45
9А736 1-10т   3200  6300 360   0,3-0,45  45
9А736А  1-16т  3200  6300  500  0,3-0,45  140
МС-20  3-30т  3500  6000  460  0,36-0,45  140
9719Б  30т  4000  5600  500  0,2-10  110
9739  10-100т  2000  11500  600 0,3-0,45   420
   Технические характеристики ряда универсальных станков для динамической балансировки жестких роторов, выпускаемых предприятиями стран СНГ, приведены в табл. 1. В таблице обозначено: т, d, L, Dц- соответственно наибольшие диаметр, расстояние между опорами и диаметр цапф балансируемого ротора в мм; пб- балансировочная скорость, тыс. об/мин; N-мощность привода, кВт.
Поскольку требующие динамической балансировки роторы в большинстве случаев базируются на двух опорах в горизонтальном положении, в станках для динамической балансировки обычно предусматривается горизонтальная установка ротора на две опоры, которые смонтированы на колеблющейся раме, или в которых размещены колебательные системы с подшипниками (призмами, вкладышами, роликами и т.п.). При этом собственная частота колебательной системы соответственно ниже, равна или выше частоты вращения ротора при балансировке. Верхняя часть опоры, на которую базируется ротор, выполняется сменной.
По массе балансируемых роторов станки можно разделить на три группы: легкие - для балансировки роторов массой до 10 кг, средние - для роторов массой до тонны и тяжелые - для более тяжелых роторов.
Гамма станков охватывает балансируемые роторы массой от 10 г до 100 т. Малые станки мод. 9703, 9А711 и 9712 для роторов массой до 3 кг выпускает Кировоканский завод (КЗПС), станки мод. 9713 и 9А714 для роторов массой до 30 кг - Одесский завод (ОЗПС), станки серии ДБ для роторов от 1,5 до 1000 кг- Савеловский завод (СМЗ); Минское станкостроительное объединение (МСПО) производит станки для динамической балансировки роторов массой от 100 кг (9715Р) до 100 т (9739).
Для балансировки легких роторов применяют зарезонансные станки с подвесными опорами. Вращение балансируемого ротора осуществляется ременным приводом. Колебания опор воспринимаются электродинамическими датчиками. Измерительные системы обычно имеют избирательный усилитель, стробоскоп и потенциометрическую цепь разделения плоскостей коррекции. Для определения легкого места по окружности ротора наносят ряд цифр или наклеивают бумажную полоску с цифрами.
Для балансировки роторов массой от нескольких до 1000 кг применяют станки как зарезонансного, так и дорезонансного типов с ременным или осевым приводом и разнообразными измерительными системами. В станках мод. 9В725, 9Б725А и 9А730 измерение дисбаланса ротора проводится по величине колебаний опор вращающейся через карданный вал с упругими муфтами детали, что обеспечивает высокую точность балансировки. Во время разгона и торможения шпинделя опоры станка автоматически (от реле времени) затормаживаются специальными устройствами, что исключает их чрезмерное раскачивание при прохождении резонансных оборотов. Измерительное устройство содержит в себе полупроводниковый усилитель токов датчиков и LC-фильтры, роль индуктивностей в которых выполняют обмотки трансформаторов. Определение угла установки корректирующих масс происходит автоматически по шкале, вращающейся от небольшого электродвигателя, включаемого совместно с главным через электромагнитную муфту, управляемую фазочувствительным устройством - электронным прерывателем. В качестве датчика фазы применен маломощный генератор, ротор которого вращается синхронно со шпинделем станка, а статор связан со шкалой угла. Устройство обеспечивает измерение угла с ошибкой 1-2°. Система измерения предусматривает электрическое условное уравновешивание ротора путем компенсации токов датчиков током специального генератора, что позволяет настроить решающее устройство и определить цену деления шкалы прибора без предварительной балансировки ротора.
Привод станков осуществляется от асинхронного короткозамкнутого двигателя. Две ступени скорости вращения достигаются перестановкой клинового ремня на соответствующие ступени шкивов на шпинделе и двигателе. В станках мод. 9А730 и 9Б730 ведущий шкив на валу двигателя имеет встроенную центробежную муфту, защищающую двигатель от перегрузки при разгоне роторов с большим моментом инерции. Станок мод. 9А730 имеет валоповоротное устройство для медленного установочного вращения ротора и обеспечения трогания с места тяжелых роторов.
Станок мод. 9Б730 отличается от 9А730 применением жестких опор с пьезодатчиками, что позволяет быстро переналаживать его. В станке применены роликовые регулируемые по высоте опоры и приводная муфта, эллипсоид инерции которой есть шар, что делает ее нечувствительной к нарушениям центровки и не требующей балансировки при смене поводка, соединяющего муфту с балансируемым ротором. Чувствительность станка мод. 9Б730 несколько ниже, чем станка 9А730, что обусловлено помехами, создаваемыми подшипниками качения и усилением этих помех пьезодатчиками.
Станки для балансировки роторов массой более 1000 кг имеют осевой привод карданным валом с шарнирными муфтами, жесткие дорезонансные опоры и высокочувствительное ферродинамическое ваттметрическое измерительное устройство. Привод постоянного тока с возбуждением возбудителя генератора от электромашинного усилителя, что позволяет автоматически регулировать момент электродвигателя при разгоне и торможении ротора, а также получить его медленное вращение. Вал для присоединения муфты к ротору телескопический.
Станок мод. 9А734 имеет валоповоротное устройство, что позволило сделать привод полностью на переменном токе и существенно снизить его стоимость. Валоповоротное устройство вращает шпиндель через червячный редуктор и обгонную муфту, допускающую переключением направления вращения обоих электродвигателей реверсирование шпинделя. Изменение скорости вращения шпинделя обеспечивается переключением зубчатых колес в редукторе. Электродвигатель главного привода соединяется с редуктором с помощью охлаждаемой центробежной муфты.
Валоповоротное устройство в станках мод. 9А736 и 9А736А позволило почти вдвое снизить мощность главного привода с сохранением системы генератор-двигатель с электромашинным усилителем в системе управления привода. Двигатель валоповоротного устройства соединен с главным редуктором через червячную передачу и кулачковую муфту, управляемую электромагнитом. Шпиндельная бабка установлена на закрепленной на станке тумбе, что обеспечивает стабильность центровки шпинделя с осью опор и облегчает монтаж станка. Аппараты управления приводом размещены в этой же тумбе.
Станок мод. 9739 не имеет сплошной металлической станины. Направляющие, по которым перемещаются опоры, разделены по длине на две части и закреплены на бетонном фундаменте станка, на котором установлена и рама с редуктором и электродвигателем валоприводного устройства. Электродвигатель главного привода установлен на той же раме. Пульт управления приводами, пульт измерительного устройства и приборы контроля температуры масла на выходе из подшипников ротора смонтированы в отдельной тумбе, установленной перед станком.
Схема балансировочного станка общего назначения с двумя подвижными опорами (группа 3 станков - с фиксированной плоскостью колебаний оси ротора (см. рис. 1, б)) показана на рис. 7.
Балансируемый ротор 4 на станке приводится во вращение электродвигателем 13 через шпиндель 12 станка и карданный вал 3 или ременную передачу. Конструкция привода ротора в значительной мере определяет точность балансировки. Карданный вал в осевом приводе ухудшает параметры колебательной системы станка и ограничивает точность балансировки. Несоосное присоединение карданного вала действует как дополнительный дисбаланс, пропорциональный эксцентриситету приводной шейки ротора или муфты вала. Для повышения точности балансировки повышают точность изготовления карданного вала и облегчают его по сравнению с массой балансируемого ротора. В станках нормальной точности применяется осевой карданный привод. Станок снабжается комплектом сменных карданных валов для передачи крутящего момента роторам различной массы.
 

Рис. 7. Схема балансировочного станка общего назначения (группа 3 -см. рис. 1, б)
Станки классов П и В для повышения точности балансировки оборудуют ременными приводами. Привод ротора накидным ремнем применен в станках мод. 9715Р, боковой тангенциальный привод- в станках мод. 9713, 9714, верхний тангенциальный привод - в станках мод. 9А711, 9712.
Для быстрой остановки ротора станок с осевым приводом оборудован тормозом 11. В станках с ременной передачей торможение ротора происходит за счет трения между поверхностями шкива и ремня. В станках для балансировки тяжелых роторов торможение осуществляют электрическими методами.
Ротор 4 устанавливается в опорах 9А и 9В, смонтированных на станине станка 10. Положение опор по длине станины в соответствии с длиной балансируемого ротора регулируется с помощью устройств 8. В зарезонансных станках устанавливаются опоры 5, в которых колебательная система 7 (люлька) подвешена на стальных лентах. В дорезонансных станках установлены опоры 6, колебательная система 7' которых образована упругими вертикальными стойками опоры.
Отсчет угла дисбаланса проводится по закрепленному на шпинделе 72 станка градуированному лимбу 2. Со шпинделем кинематически связан генератор 14 или преобразователи опорного сигнала. Сигналы от размещенных в опорах станка датчиков 75 и генератора 14 поступают в измерительный блок 1.
В станках нормального класса точности с осевым приводом измерительный блок выполнен по одноканальной схеме с поочередным измерением дисбаланса по левой и правой плоскостям коррекции с ваттметровыми индикаторами, которые обеспечивают и фильтрацию помех. Значения дисбаланса считываются по шкале дистанционного индикатора, а углы дисбаланса - по положению статора генератора опорного сигнала.
В станках повышенной точности с осевым приводом измерительный блок выполнен по системе АМВТ и обеспечивает одновременное измерение дисбаланса в обеих плоскостях коррекции с цифровой индикацией значений дисбаланса. Угол дисбаланса определяется с помощью стрелочного (светового) индикатора и считывается со шкалы лимба на шпинделе.
В станках нормального класса точности балансировки с ременным приводом измерительный блок выполнен по схеме со стробоскопической лампой. Помехи фильтруются избирательным усилителем, а угол дисбаланса отсчитывается по меткам на роторе с использованием стробоскопического эффекта. В станках повышенной и высокой точности измерительный блок выполнен по схеме аналого-цифрового перемножения сигнала датчика и опорного сигнала, формируемого с помощью фотодатчика и метки на роторе. Индикация значения дисбаланса осуществляется в цифровой или аналоговой форме, угла дисбаланса - в цифровой форме, отсчитывая его по градусной шкале на роторе от контрастной метки или с помощью специального углового измерителя.
В станках для динамической балансировки осуществляют операцию условной балансировки ротора. При осевом приводе вращения в качестве источника сигнала условной балансировки применяют отдельный генератор, связанный со шпинделем станка. В станках с ременным приводом в качестве сигнала условной балансировки используют опорный сигнал, сформированный фотодатчиком блока измерения.
Специфической операцией настройки станка для динамической балансировки на ротор данного типа является разделение плоскостей коррекции с целью уменьшения их взаимного влияния и обеспечения независимости измерения составляющих дисбаланса по левой и правой плоскостям.
В измерительных системах зарезонансных станков разделение плоскостей коррекции проводит специальная схема решающего устройства за счет алгебраического суммирования сигналов двух датчиков опор пропорционального коэффициентам взаимного влияния плоскостей коррекции, выполняемого при пробных пусках станка с тарированным ротором, отбаланированным электрически или физически. Для этого в одну из плоскостей коррекции тарировочного ротора ставят пробный груз, осуществляют измерение и регулятором цепи разделения плоскостей сводят показания индикатора дисбаланса в противоположной плоскости к нулевому (минимальному) значению. Для второй плоскости операцию выполняют аналогично после соответствующей перестановки этого же пробного груза.
В дорезонансных балансировочных станках разделение плоскостей коррекции и тарирование выполняют без применения тарировочного ротора и пробных пусков, так как зависимость между динамическими давлениями на опорах станка и неуравновешенными силами в плоскостях коррекции определяется системой уравнений статики из условий равновесия сил и моментов, решаемой электронной схемой измерительного блока. Геометрические параметры ротора вводят в измерительную систему в качестве коэффициентов уравнений. Для тарирования масштаба измерения вводят радиус установки корректирующих масс на роторе, а для разделения плоскостей коррекции - координаты опор станка и плоскостей коррекции.
Наладка станка состоит в регулировке механических узлов и настройке на данный ротор. Перед установкой ротора на станок в соответствии с его базовыми поверхностями регулируют расстояние между опорами станка. Для станков с осевым приводом регулируют высоту опор в соответствии с диаметрами базовых поверхностей ротора и соединение муфты карданного вала с приводной шейкой ротора. В станках с ременным приводом регулируют натяжение приводного ремня. Настройка станка на данный ротор содержит в себе условную балансировку ротора, разделение плоскостей коррекции и тарирование измерительной системы, выполняемые по методике, изложенной в руководстве по эксплуатации станка.
Специальные балансировочные станки
Многообразие конструкций и номенклатуры применяемых в различных отраслях машиностроения и в приборостроении роторов потребовали создания моделей специальных станков-автоматов, предназначенных для балансировки различных изделий серийного и крупносерийного производств, в которых операции по определению и устранению дисбаланса ротора совмещены. Колебательная система, шпиндельный узел, привод, измерительная система и др. специальных станков могут быть унифицированы с ранее разработанными станками. Степень унификации узлов станка определяют на основании анализа технических требований на балансировку конкретного ротора.
Таблица 2. Специальные балансировочные станки конструкции ЭНИМС
Модель т, кг d, мм L, мм n6 nсв N, кВт М, т
9А719 12 125 230 1600 645 6 4
9722 25 - 405 800 600 7,35 4
9А720 35 180 350 1600 565 8,71 5,5
МА97Д52 60 800 320 450 - - 0,25
МА(23-25) 68 198 566 600 300 9,56 8
МА(23-26) 68 198 566 600 300 11,4 10
МА97 500 1000 2000 100 - 1,15 1,5
МА9707Д 650 600 850 1000 - 5,5 1,75
МА9708 2500 1200 1600 600 - 22 2,7
9Б734 3200 2500 4000 600 - 14 6,5
   Основные технические характеристики ряда специальных балансировочных станков, разработанных в ЭНИМСе, МГТУ им. Н.Э. Баумана и других отечественных предприятиях, приведены в табл. 2-5, в которых, дополнительно к принятым в табл. 1, обозначено: М- масса станка, т; псв - частота вращения при сверлении, об/мин; L - наибольший момент инерции балансируемого ротора, кг • м2; Do.y- удельный остаточный дисбаланс, г • мм/кг; Eост - остаточный эксцентриситет центра масс ротора, мкм; Nи - мощность излучателя лазерного луча, кВт; Q - производительность станка, шт/час.
В станках конструкции ЭНИМС мод. 9А720 и 9722 (табл. 2) параметры дисбаланса показываются в косоугольной системе координат, в остальных станках - в полярной. На всех станках, кроме МА97Д52, ось балансируемого ротора горизонтальна.
Станки мод. 9А719, 9А729, предназначенные для балансировки роторов электродвигателей, и 9722, МА(23-25), МА(23-26) для балансировки коленчатых валов двигателей внутреннего сгорания, оборудованы сверлильными устройствами с двумя головками по два сверла в каждой (в станке 9722 - восемь головок по одному сверлу). Корректирование масс проводится без снятия ротора со станка автоматически путем сверления отверстий диаметром до 14 мм, глубиной до 25-42 мм (на станке 23-25 диаметр сверла до 20 мм, на станке 23-26 - до 10 мм).
В станках мод. МА9707Д, МА9708 и МА9747 вращение шпинделя с балансируемым ротором через ременную передачу осуществляется регулируемым тиристорным приводом постоянного тока, позволяющим изменять балансировочную частоту вращения в широких пределах.
Станки мод. МА9707Д и МА9708 предназначены для измерения в двух плоскостях коррекции дисбаланса солнечных шестерен и сателлитов планетарных редукторов большой мощности. Колебательная система станка выполнена в виде сейсмически установленной на основании платформы на четырех упругих стержнях. Условия базирования деталей соответствуют условиям их работы и взаимодействия в редукторе: солнечные шестерни базируются по зубчатому венцу, а сателлиты - по внутренней расточке на оправке с гидростатическими подшипниками. Наибольший начальный удельный дисбаланс изделия равен 500 г • мм/кг.
На платформе размещены индукционные датчики колебаний. Значение дисбаланса выводится на стрелочные указатели измерительного пульта. Угол дисбаланса определяется с помощью стробоскопа. Точность измерения удельного дисбаланса при балансировке по зубчатому венцу составляет 2, а при балансировке по отверстию - 1 г • мм/кг. Для повышения точности станка в измерительной системе в качестве генератора опорного сигнала может быть использован фотодатчик.
Станок мод. МА9747 с вертикальной осью вращения шпинделя предназначен для низкочастотной динамической балансировки роторов и изделий в сборе, работающих на частотах вращения ниже 100 об/мин. Колебательная система станка дорезонансного типа состоит из связанного упругими элементами с неподвижным основанием шпиндельного узла, к верхнему фланцу которого жестко прикреплена планшайба для крепления балансируемого изделия высотой до 2000 мм. Наибольшее начальное смещение центра масс балансируемого изделия до 10 мм, наибольшее начальное отклонение его ГЦОИ от оси вращения - до 7°. Погрешность измерения значения дисбаланса не более ±5%, угла - не более ±3°.
В качестве датчиков колебаний применяют параметрические датчики перемещений трансформаторного типа, соединенные тягами с корпусом шпинделя. Синхронно и синфазно со шпинделем вращается ротор синусно-косинусного вращающегося трансформатора, являющегося генератором опорного сигнала. На станке измеряются дисбалансы в двух плоскостях коррекции либо их статическая и моментная составляющие.
Таблица 3. Специальные балансировочные станки конструкции МГТУ
 

 

Блок электрического эталонирования измерительной системы станка позволяет настраивать станок непосредственно по серийному балансируемому изделию без применения тарировочного ротора.
Специальный станок мод. 9Б734 для балансировки коленчатых валов тепловозных дизелей создан на базе станка мод. 8А734 общего назначения. Особенностью станка является применение многоопорного крепления детали к жесткой люльке, что обеспечивает возможность динамической балансировки гибкой детали. Станок оборудован счетным устройством, раскладывающим дисбаланс по направлениям кривошипов. При балансировке вала металл снимается с приливов щек.
В разработанных и изготовленных в МГТУ специальных станках мод. МВТУ (табл. 3) подвижная часть колебательной системы выполнена в виде упруго подвешенной платформы, имеющей 6 степеней свободы (группа 4 - см. рис. 1, б). Собственная частота подвижной части обеспечивает зарезонансный режим измерения параметров колебания при высокой помехозащите от вибраций основания и позволяет применять в измерительном блоке фильтры низкой добротности. Однако станок нуждается в защите от воздействия ударных нагрузок. Балансируемое изделие в большинстве станков устанавливается на шпиндель с вертикальной осью вращения (в станке мод. 0726 ось балансируемого карданного вала расположена горизонтально).
Измерительная система станков проводит электрическую компенсацию дисбаланса шпинделя и сменных оправок. Значение дисбаланса показывается на стрелочном приборе, а угол - на поворотном лимбе. Совмещением показаний лимба и градусной шкалы на шпинделе в заданной плоскости устанавливается "тяжелое" место балансируемого ротора. Станки ряда моделей могут быть оснащены сверлильным устройством для коррекции дисбаланса непосредственно на станке.
Для автоматической балансировки карданных валов автомобилей разработаны специальные станки, технические характеристики которых приведены в табл. 4.
Таблица 4. Станки для балансировки карданных валов
 
7 495 240 83 64
8 800 700 07 45
109202 Москва, 1-я Фрезерная д.2/1, стр.2

Модель т, кг d, мм